
VOC Documentation
Release 0.1

Russell Keith-Magee

Mar 19, 2017

Contents

1 Getting Started 3
1.1 The VOC Developer and User community . 3
1.2 Frequently Asked Questions . 4
1.3 Installation . 5

2 Tutorials 7
2.1 Tutorial 0 - Hello, world! . 7

3 Development 9
3.1 Contributing to VOC . 9
3.2 Release History . 11
3.3 VOC Roadmap . 11
3.4 Python signatures for java-defined methods . 12
3.5 The VOC type system . 14

i

ii

VOC Documentation, Release 0.1

VOC is an early alpha project. If it breaks, you get to keep all the shiny
pieces.

VOC is a transpiler that takes Python 3.4 source code, and compile it into a Java class file that can then be executed
on a JVM, or run through a DEX tool to run on Android. It does this at the bytecode level, rather than the source code
level.

It honors Python 3.4 syntax and conventions, but also provides the ability to reference objects and classes defined in
Java code, and implement interfaces defined in Java code.

Contents 1

https://pybee.org/voc

VOC Documentation, Release 0.1

2 Contents

CHAPTER 1

Getting Started

VOC is a transpiler that takes Python 3.4 source code, and compiles it into a Java class file that can then be executed
on a JVM.

It honors Python 3.4 syntax and conventions, but also provides the ability to reference objects and classes defined in
Java code, and implement interfaces defined in Java code.

The VOC Developer and User community

VOC is part of the BeeWare suite. You can talk to the community through:

• @pybeeware on Twitter

• Our Gitter channel for discussion about development and general help around this project or anything under the
Beeware suite of projects.

Code of Conduct

The BeeWare community has a strict Code of Conduct. All users and developers are expected to adhere to this code.

If you have any concerns about this code of conduct, or you wish to report a violation of this code, please contact the
project founder Russell Keith-Magee.

Contributing

If you experience problems with VOC, log them on GitHub. If you want to contribute code, please fork the code and
submit a pull request.

3

http://pybee.org
https://twitter.com/pybeeware
https://gitter.im/pybee/general
http://pybee.org/contributing/index.html
https://github.com/pybee/voc/issues
https://github.com/pybee/voc
https://github.com/pybee/voc/pulls

VOC Documentation, Release 0.1

Frequently Asked Questions

Is VOC a source code converter?

No. VOC operates at the bytecode level, rather than the source code level. It takes the CPython bytecode format (the
.pyc files generated at runtime by CPython when the code is imported for the first time), and converts that bytecode
directly into Java bytecode in a .class file. No intermediate Java source file is generated.

Isn’t this the same thing as Jython?

No. Jython is an implementation of a Python interpreter in Java. This means it provides a REPL (an interactive
prompt), and you run your Python code through Jython. VOC converts Python directly to a Java classfile; The VOC
executable isn’t needed at runtime (although there is a runtime support library that is needed).

The clamped extension to Jython enable you to use Jython as a generator of class files - this is a closer analogy to what
VOC does.

The easiest way to demonstrate the difference between Jython and VOC is to look at the eval() and exec() methods.
In Jython, these are key to how the process works, because they’re just hooks into the runtime process of parsing and
evaluating Python code. In VOC, these methods would be difficult to implement because VOC compiles all the class
files up front. To implement eval() and exec(), you’d need to run VOC through VOC, and then expose an API that
could be used at runtime to generate new .class files.

How fast is VOC?

Faster than a slow thing; slower than a fast thing :-)

Programming language performance is always nebulous to quantify. As a rough guide, it’s about an order of magnitude
slower than CPython on the same machine.

This means it probably isn’t fast enough for an application that is CPU bound. However, if this is the case, you can
always write your CPU bound parts in pure Java, and call those directly from Python, same as you would for a CPython
extension.

It should also be noted that VOC is a very young project, and very little time has been spent on performance op-
timization. There are many obvious low hanging performance optimizations that could be explored as the project
matures.

What can I use VOC for?

You can use VOC anywhere that provides a Java runtime environment, but you want to write your logic in Python. For
example:

• Writing Android applicaitons

• Writing Lucene/ElasticSearch custom functions

• Writing Minecraft plugins

• Writing web applications to deploy in a J2EE container

In each of these cases, the project provides a Java (or Java-like, in the case of Android) environment. While some
bridging might be possible with JNI, or by writing a thin Java shim that calls out to another language environment,
these approaches mean you’re developing a plugin at arms length.

4 Chapter 1. Getting Started

VOC Documentation, Release 0.1

The VOC approach allows you to develop your Python application as if it were native. The class files even have
references to the Python source code, so when a stack trace is generated, it will tell you the line of Python source that
caused the problem.

What version of Python does VOC require?

VOC runs under Python 3.4, and compiles Python 3.4 compatible bytecode.

What version of Java does VOC require?

VOC runs on:

• Java 6 without any special handling;

• Java 7 by enabling the -XX:-UseSplitVerifier flag at runtime;

• Java 8 by enabling the -noverify flag at runtime.

The complication with Java 7 and Java 8 is due to a feature of class files (called a Stack Map Frame) that was introduced
as an optional feature in Java 6, and has been decreasingly optional in each subsequent release.

It would be entirely possible to generate Stack Map Frames for the generated class files from the information in a
Python class file, but the developers haven’t had a chance to get around to that yet.

Why “VOC”?

The Vereenigde Oostindische Compagnie (VOC), or Dutch East India Company, is often considered the be the world’s
first multinational corporation. It was also the first company to issue shares, and facilitate the trading of those shares.
It was granted a 21 year monopoly to carry out trade activities in Asia, primarily the Spice Islands - the Dutch East
Indies. They established a major trading port at Batavia - now Jakarta, on the island of Java (now part of Indonesia).
As a result of their monopoly, the VOC became an incredibly valuable company, issuing an 18% annual dividend for
almost 200 years.

VOC was... the worlds first Enterprise site in Java. (rimshot!)

Can I make an Android app already?

Yes, but currently you have to use Android Java API (you’ll be able to use toga once toga-android is more mature).

There is an example todo list app, you can see a video of it and check the code.

Installation

In this guide we will walk you through setting up your VOC environment for development and testing. We will assume
that you have a working Python 3, JDK, Apache ANT installation and use virtualenv.

The default version apt-get provides on Ubuntu 16.04 is 3.5+ but VOC won’t build on Python3.5+. Hence, a separate
Python 3.4+ installation would be required.

1.3. Installation 5

https://en.wikipedia.org/wiki/Dutch_East_India_Company
https://github.com/pybee/toga
https://github.com/pybee/toga-android
https://www.youtube.com/watch?v=RisCgSIWwLA
https://gist.github.com/freakboy3742/7beb22c587e57240610777a44af645d8

VOC Documentation, Release 0.1

Checking Dependencies

To check if you have Python installed, run python --version at the command line

$ python --version
Python 3.4.4

To check if you have the JDK installed, run javac -version

$ javac -version
javac 1.7.0_101

To check if Apache ANT is installed, run ant -version

$ ant -version
Apache Ant(TM) version 1.9.7 compiled on April 24 2016

Get a copy of VOC

The first step is to create a project directory, and clone VOC:

$ mkdir tutorial
$ cd tutorial
$ git clone https://github.com/pybee/voc.git

Then create a virtual environment and install VOC into it:

$ virtualenv -p $(which python3) env
$. env/bin/activate
$ cd voc
$ pip install -e .

For Windows the use of cmd under Administrator permission is suggested instead of PowerShell.

> virtualenv -p "C:\Python35\python.exe" env
> env\Scripts\activate.bat
> cd voc
> pip install -e .

Building the support JAR file

Next, you need to build the Python support file:

$ ant java

This should create a dist/python-java-support.jar file. This JAR file is a support library that implements
Python-like behavior and provides the Python standard library for the Java environment. This JAR file must be included
on the classpath for any VOC-generated project.

Next Steps

You now have a working VOC environment, so you can start the first tutorial.

6 Chapter 1. Getting Started

CHAPTER 2

Tutorials

These tutorials are step-by step guides for using VOC. They all assume that you’ve set up your development environ-
ment as described in /intro/getting-started.

Tutorial 0 - Hello, world!

In this tutorial, you’ll take a really simple “Hello, world!” program written in Python, convert it into a classfile, and
run it on the Java Virtual Machine.

Setup

This tutorial assumes you’ve read and followed the instructions in /intro/getting-started. If you’ve done this, you
should have:

• Java 6 (or higher) installed and available on your path,

• An env directory for your virtualenv

• A tutorial directory with a VOC checkout,

• An activated Python 3.4 virtual environment,

• VOC installed in that virtual environment,

• A compiled VOC support library.

Start a new project

Let’s start by creating a tutorial0 directory in the tutorial directory alongside the voc directory you just cloned
into:

$ mkdir tutorial0
$ cd tutorial0

7

VOC Documentation, Release 0.1

So that your directory structure looks like:

tutorial
- env
- tutorial0
- voc

Then create a file called example.py in this tutorial0 directory. Add the following Python code to example.
py:

print("Hello World!")

Save the file. Run VOC over this file, compiling the Python code into a Java class file:

$ voc -v example.py

This runs the VOC compiler over the example.py source file. The -v flag asks VOC to use verbose output so you
can see what is going on. You will see output like the following:

Compiling example.py ...
Adding default main method...
Writing python/example/__init__.class ...

This will produce an __init__.class in the python/example namespace. This classfile can run on any Java
6 (or higher) VM. To run the project, type:

• On Linux / OS X

$ java -classpath ../voc/dist/python-java-support.jar:. python.example.__init__
Hello World!

• On Windows

> java -classpath ../voc/dist/python-java-support.jar;. python.example.__init__
Hello World!

Congratulations! You’ve just run your first Python program under Java using VOC! Now you’re ready to get a little
more adventurous.

8 Chapter 2. Tutorials

CHAPTER 3

Development

Contributing to VOC

If you experience problems with VOC, log them on GitHub. If you want to contribute code, please fork the code and
submit a pull request.

Setting up your development environment

The process of setting up a development environment is very similar to the /intro/getting-started process. The biggest
difference is that instead of using the official PyBee repository, you’ll be using your own Github fork.

As with the getting started guide, these instructions will assume that you have Python3, a Java 7 or Java 8 JDK, and
Apache ANT installed, and have virtualenv available for use.

Note: If you are on Linux, you will need to install an extra package to be able to run the test suite. * Ubuntu 12.04
and 14.04: libpython3.4-testsuite This can be done by running apt-get install libpython3.
4-testsuite. * Ubuntu 16.04: The default version apt-get provides on Ubuntu 16.04 is 3.5+. voc does not build
on Python3.5+. A seperate Python3.4 is required.

Start by forking VOC into your own Github repository; then check out your fork to your own computer into a devel-
opment directory:

$ mkdir voc-dev
$ cd voc-dev
$ git clone git@github.com:<your github username>/voc.git

Then create a virtual environment and install VOC into it:

$ virtualenv -p $(which python3) env
$. env/bin/activate
$ cd voc
$ pip install -e .

You’re now ready to run the test suite!

9

https://github.com/pybee/voc/issues
https://github.com/pybee/voc
https://github.com/pybee/voc/pulls

VOC Documentation, Release 0.1

Running the test suite

To run the entire test suite, type:

$ python setup.py test

To capture unexpected successes and new failures in test:

$ python setup.py test 2>&1 | grep -E 'success|FAIL'

Running the full test suite will take quite a while - it takes 40 minutes on the CI server. You can speed this up by
running the tests in parallel via pytest:

$ pip install -r requirements/tests.txt
$ py.test -n auto

You can specify the number of cores to utilize, or use auto as shown above to use all available cores.

If you just want to run a single test, or a single group of tests, you can provide command-line arguments.

To run a single test, provide the full dotted-path to the test:

$ python setup.py test -s tests.datatypes.test_str.BinaryStrOperationTests.test_add_
→˓bool

To run a full test case, do the same, but stop at the test case name:

$ python setup.py test -s tests.datatypes.test_str.BinaryStrOperationTests

Or, to run all the Str datatype tests:

$ python setup.py test -s tests.datatypes.test_str

Or, to run all the datatypes tests:

$ python setup.py test -s tests.datatypes

Working with code for Java bytecode

If you find yourself needing to work with the parts of VOC that generates Java bytecode, you might find helpful these
pointers:

• A Python interpreter written in Python will get you started on how stack based machines work. While the
examples aren’t for the JVM, the workings of the machines are similar enough to help you get used to the
thinking.

• The Java bytecode instructions are represented by classes in voc.java.opcodes that inherit from voc.
java.opcodes.Opcode. Most of the code to generate bytecode is in the voc.python.ast module,
and the bytecode generating code is often a sequence of instances of these opcode classes calling the method
add_opcodes() for the current context.

• The add_opcodes() method also support helpers that work as pseudo-instructions, which allow to generate
more complex sequences of instructions, like the IF(), TRY(), CATCH() from the voc.voc.python.
structures module. It’s easier to understand how these work finding an example of usage in VOC itself.
Ask in Gitter, if you need help with it.

10 Chapter 3. Development

http://www.aosabook.org/en/500L/a-python-interpreter-written-in-python.html

VOC Documentation, Release 0.1

Troubleshooting generated bytecode

Troubleshooting issues in the generated bytecode can be a bit hard.

There are some tools that can help you to see what’s going on. You can use a tool available in the ASM project to
check the bytecode for problems.

Download the ASM binary distribution from the ASM project, extract the file in some directory and create a script like
this:

ASM_VERSION=5.2
ASM_HOME=/path/to/asm-${ASM_VERSION}/lib

[-n "$2"] || { echo "Usage: $(basename $0) CLASSPATH CLASS_TO_ANALYSE"; exit 1; }

asm_file="$ASM_HOME/asm-${ASM_VERSION}.jar"
[-f "$asm_file"] || { echo "Couldn't find file $asm_file"; exit 1; }

classpath=$1
class_to_analyse=$2

java -cp "$ASM_HOME/asm-${ASM_VERSION}.jar:$ASM_HOME/asm-tree-${ASM_VERSION}.jar:$ASM_
→˓HOME/asm-analysis-${ASM_VERSION}.jar:$ASM_HOME/asm-util-${ASM_VERSION}.jar:
→˓$classpath" org.objectweb.asm.util.CheckClassAdapter $class_to_analyse

Then you can call it like:

asm.sh /PATH/TO/voc/dist/python-java-support.jar:. path.to.JavaClass

This will give you a brief diagnosis of problems found in the bytecode for the given Java class, and if possible will
print a friendlier version of the bytecode.

If you just want to see a human friendly version of the Java bytecode to double check the generated code, you can also
try the command:

javap -c path.to.JavaClass

Release History

0.1.0

Progress release. VOC is currently able to compile a simple working Android application.

0.0.1

Initial public release.

VOC Roadmap

VOC is a new project - we have lots of things that we’d like to do. If you’d like to contribute, providing a patch for
one of these features:

• Port a set of basic type operations

3.2. Release History 11

http://asm.ow2.org/download/index.html
http://asm.ow2.org/download/index.html

VOC Documentation, Release 0.1

• Implement a Python standard library module for

• Implement StackMapFrames for the generated Java class files.

• Work out how to run the CPython test suite with VOC

Python signatures for java-defined methods

In essence, a method is not much different from a Java method. One defines a method as follows. Here is a simple
example of a 1-argument function.

@org.python.Method(
__doc__ = "foobar(fizz) -> buzz" +

"\n" +
"Return the foobarified version of fizz.\n",

args = {"fizz"}
)
public function org.python.Object foobar(org.python.Object fizz) {

return buzz;
}

The org.python.Method creates an annotation on the method. Allowable values are

name The name of the method. If not specifies, uses reflection to get the name.

__doc__ The documentation string of the method.

args An array of argument names.

varargs The name of the argument that should get all other values.

default_args An array of argument names that get “default” values. The handling of the default values should be
done by checking the argument null‘

kwonlyargs An array of arguments that may only be supplied as a keyword argument.

kwargs A name of the argument that recieves the keyword arguments.

Examples

Because examples speak clearer than a thousand words.

A function with no arguments

Here is a sample of a function always returning the same value. Since it has no arguments, there is no need to supply
any of the named

def constant_4():
"""Return 4, always and ever."""
return 4

@org.python.Method(
__doc__ = "Return 4, always and ever."

)
public org.python.Object constant_4() {

return org.python.types.Int(4);
}

12 Chapter 3. Development

VOC Documentation, Release 0.1

A function with two arguments

Another simple function is that of adding two given numbers.

def add(num1, num2):
"""Add two numbers."""
return num1 + num2

@org.python.Method(
__doc__ = "Add two numbers.",
args = {"num1", "num2"}

)
public org.python.Object add(org.python.Object num1, org.python.Object num2) {

// Left as exercise for the reader.
}

A function with a default argument

Similarly, we might want to make the second argument optional, allowing you to either add 1 to the number, or the
supplied argument.

def inc(num, delta=1):
"""Increment a number."""
return num + delta

@org.python.Method(
__doc__ = "Add two numbers.",
args = {"num"},
default_args = {"delta"}

)
public org.python.Object inc(org.python.Object num, org.python.Object delta) {

if (delta == null) {
delta = new org.python.types.Int(1);

}
// Left as exercise for the reader.

}

A function with variable arguments

Of course, sometimes you don’t want to specify a specific number of arguments, but accept as many as you can get.
For instance, the min function.

def min(first, *others):
"""Get the minimum of the supplied arguments."""
val = first
for other in others:

if other < val:
val = other

return val

@org.python.Method(
__doc__ = "Get the minimum of the supplied arguments.""",
args = {"first"},
varargs = "others"

3.4. Python signatures for java-defined methods 13

VOC Documentation, Release 0.1

)
public org.python.Object min(org.python.Object first, org.python.types.Tuple others) {

org.python.Object val = first;
for (org.python.Object other: others) {

if (other.__lt__(val)) {
val = other;

}
}
return val;

}

A function accepting keyword arguments

def loop_kwargs(**kwargs):
"""Loop over the kwargs to this function."""
for k in kwargs:

pass

@org.python.Method(
__doc__ = "Loop over the kwargs to this function.",
args = {},
kwargs = "kwargs"

)
public org.python.Object loop_kwargs(org.python.types.Dict kwargs) {

Map<org.python.Object, org.python.Object> kwargValues = kwargs.value;
for (org.python.Object key : kwargValues.keySet()) {

// The keys will always be python Str objects
org.python.types.Str keyStr = (org.python.types.Str) key;

}
return org.python.types.NoneType.NONE;

}

The VOC type system

VOC works by operating on a layer of “Python-like” objects. A Python-like object is any object that implements
the org.python.Object interface. This interface consists of all the “dunder” methods, like __getattr__,
__setattr__, __init__, __repr__ and __str__, that the Python interpreter might use on a Python object.

The default implementation of org.python.Object is org.python.types.Object. This is the VOC rep-
resentation of the base Object class. As any Python object can be thrown as an exception, org.python.types.
Object extends java.lang.RuntimeException.

The Python dict builtin type is implemented in the class org.python.types.Dict. This class is a subclass
of org.python.types.Object. All methods and attributes of a Python dict are implemented as instance
methods and attributes of this class.

The Python builtin type type is implemented as org.python.types.Type, which is also a subclass of org.
python.types.Object. Instances of org.python.types.Type contain a reference to the Java class that
instances of that Python type will be constructed from. As a result, instances of org.python.types.Type can
be invoked as a function to create instances of the class wrapped by the type. All instances of Python-like objects
can be interrogated for their type. There will only be one instance of org.python.types.Type for any given
Python-like object.

14 Chapter 3. Development

VOC Documentation, Release 0.1

So - there is an instance of org.python.types.Type that refers to org.python.types.Dict; and all
instances of org.python.types.Dict contain a reference of that org.python.types.Type instance.
The org.python.types.Type instance referring to org.python.types.Dict (which will be indexed as
"dict") can be invoked to create new org.python.types.Dict instances.

Type origins

VOC Types are classified according to their origin. There are four possible origins for a type:

• Builtin types

• Python types

• Java types

• Extension types

Builtin Types

These are data types built into the VOC support library. All the basic Python types like dict and list are Builtin
types. The standard Python exceptions are also builtin types.

• Python instance attributes are stored on the Java instance. When storing

• instance attributes, VOC will look for a Field on the Java class that

• matches the name of the Python attribute; if one exists, and it has been

• annotated in the Java source with a @org.python.Attribute annotation,

• that field will be used for storage. Otherwise, the value will be placed in

• the __dict__ for the instance.

• Python instance methods are instance methods on the Java class, with

• prototypes that match Python name-for-name, excluding the self argument,

• which will be implicitly added. *args is mapped to ‘‘org.python.Object

• [] args‘‘, and **kwargs to ‘‘java.util.Map<java.lang.String,

• org.python.Object> kwargs‘‘. Arguments with default values should be passed

• in as null (a Java null, not a Python None); the method

• implementation is then responsible for substituting an appropriate Python

• value if a null was provided in the argument list.

• Each Object class has a static __class__ attribute, which is an instance

• of org.python.types.Type(), constructed wrapping the Java class

• implementing instances of the Python instances of that type. This type can

• be retrieved by calling the type() method on the Java instance (which is

• part of the org.python.Object interface)

3.5. The VOC type system 15

VOC Documentation, Release 0.1

Python Types

Python types are types that are declared in Python, extending the base Python object (either explicitly, implicitly,
or as a subclass of a class that is itself an explicit or implicit subclass of object).

• All Python instance attributes are stored as values in __dict__.

• Python instance methods are rolled out as a pair of methods on the Java class:

– a static method that takes an extra self argument

– an instance method

Java Types

Any object that exists in the Java namespace can be proxied into the Python environment as a Java Type.

The Java object instance is wrapped in an implementation of org.python.java.Object, which acts as a proxy tying
python __getattr__ and __setattr__ to the equivalent reflection methods in Java.

Extension Types

Extension types are types that have been declared in Python, but extend a Java type.

Implementation details

There are quirks to some of the implemenations of some Python types.

Modules

• Implemented in a __init__.class file, regardless of whether one is actually used in the Python source.

• Instance of a class, extending org.python.types.Module

• Registered as sys.modules[modulename]

Class

• Implemented in a <classname>.class file

16 Chapter 3. Development

	Getting Started
	The VOC Developer and User community
	Frequently Asked Questions
	Installation

	Tutorials
	Tutorial 0 - Hello, world!

	Development
	Contributing to VOC
	Release History
	VOC Roadmap
	Python signatures for java-defined methods
	The VOC type system

